Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Self-Calibrated Variance-Stabilizing Transformations for Real-World Image Denoising (2407.17399v1)

Published 24 Jul 2024 in cs.CV and eess.IV

Abstract: Supervised deep learning has become the method of choice for image denoising. It involves the training of neural networks on large datasets composed of pairs of noisy and clean images. However, the necessity of training data that are specific to the targeted application constrains the widespread use of denoising networks. Recently, several approaches have been developed to overcome this difficulty by whether artificially generating realistic clean/noisy image pairs, or training exclusively on noisy images. In this paper, we show that, contrary to popular belief, denoising networks specialized in the removal of Gaussian noise can be efficiently leveraged in favor of real-world image denoising, even without additional training. For this to happen, an appropriate variance-stabilizing transform (VST) has to be applied beforehand. We propose an algorithm termed Noise2VST for the learning of such a model-free VST. Our approach requires only the input noisy image and an off-the-shelf Gaussian denoiser. We demonstrate through extensive experiments the efficiency and superiority of Noise2VST in comparison to existing methods trained in the absence of specific clean/noisy pairs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.