Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Distance Reconstruction of Sparse Random Graphs (2407.17376v1)

Published 24 Jul 2024 in math.CO and cs.DS

Abstract: In the distance query model, we are given access to the vertex set of a $n$-vertex graph $G$, and an oracle that takes as input two vertices and returns the distance between these two vertices in $G$. We study how many queries are needed to reconstruct the edge set of $G$ when $G$ is sampled according to the $G(n,p)$ Erd\H{o}s-Renyi-Gilbert distribution. Our approach applies to a large spectrum of values for $p$ starting slightly above the connectivity threshold: $p \geq \frac{2000 \log n}{n}$. We show that there exists an algorithm that reconstructs $G \sim G(n,p)$ using $O( \Delta2 n \log n )$ queries in expectation, where $\Delta$ is the expected average degree of $G$. In particular, for $p \in [\frac{2000 \log n}{n}, \frac{\log2 n}{n}]$ the algorithm uses $O(n \log5 n)$ queries.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com