Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Universal Approximation of Dynamical Systems by Semi-Autonomous Neural ODEs and Applications (2407.17092v2)

Published 24 Jul 2024 in math.NA and cs.NA

Abstract: In this paper, we introduce semi-autonomous neural ordinary differential equations (SA-NODEs), a variation of the vanilla NODEs, employing fewer parameters. We investigate the universal approximation properties of SA-NODEs for dynamical systems from both a theoretical and a numerical perspective. Within the assumption of a finite-time horizon, under general hypotheses we establish an asymptotic approximation result, demonstrating that the error vanishes as the number of parameters goes to infinity. Under additional regularity assumptions, we further specify this convergence rate in relation to the number of parameters, utilizing quantitative approximation results in the Barron space. Based on the previous result, we prove an approximation rate for transport equations by their neural counterparts. Our numerical experiments validate the effectiveness of SA-NODEs in capturing the dynamics of various ODE systems and transport equations. Additionally, we compare SA-NODEs with vanilla NODEs, highlighting the superior performance and reduced complexity of our approach.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.