Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Computing asymptotic eigenvectors and eigenvalues of perturbed symmetric matrices (2407.17047v1)

Published 24 Jul 2024 in math.NA and cs.NA

Abstract: Computing the eigenvectors and eigenvalues of a perturbed matrix can be remarkably difficult when the unperturbed matrix has repeated eigenvalues. In this work we show how the limiting eigenvectors and eigenvalues of a symmetric matrix $K(\varepsilon)$ as $\varepsilon \to 0$ can be obtained relatively easily from successive Schur complements, provided that the entries scale in different orders of $\varepsilon$. If the matrix does not directly exhibit this structure, we show that putting the matrix into a generalised kernel form'' can be very informative. The resulting formulas are much simpler than classical expressions obtained from complex integrals involving the resolvent. We apply our results to the problem of computing the eigenvalues and eigenvectors of kernel matrices in theflat limit'', a problem that appears in many applications in statistics and approximation theory. In particular, we prove a conjecture from [SIAM J. Matrix Anal. Appl., 2021, 42(1):17--57] which connects the eigenvectors of kernel matrices to multivariate orthogonal polynomials.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube