Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unveiling In-Context Learning: A Coordinate System to Understand Its Working Mechanism (2407.17011v2)

Published 24 Jul 2024 in cs.CL

Abstract: LLMs exhibit remarkable in-context learning (ICL) capabilities. However, the underlying working mechanism of ICL remains poorly understood. Recent research presents two conflicting views on ICL: One emphasizes the impact of similar examples in the demonstrations, stressing the need for label correctness and more shots. The other attributes it to LLMs' inherent ability of task recognition, deeming label correctness and shot numbers of demonstrations as not crucial. In this work, we provide a Two-Dimensional Coordinate System that unifies both views into a systematic framework. The framework explains the behavior of ICL through two orthogonal variables: whether similar examples are presented in the demonstrations (perception) and whether LLMs can recognize the task (cognition). We propose the peak inverse rank metric to detect the task recognition ability of LLMs and study LLMs' reactions to different definitions of similarity. Based on these, we conduct extensive experiments to elucidate how ICL functions across each quadrant on multiple representative classification tasks. Finally, we extend our analyses to generation tasks, showing that our coordinate system can also be used to interpret ICL for generation tasks effectively.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com