Polynomial histopolation on mock-Chebyshev segments (2407.16825v1)
Abstract: In computational practice, we often encounter situations where only measurements at equally spaced points are available. Using standard polynomial interpolation in such cases can lead to highly inaccurate results due to numerical ill-conditioning of the problem. Several techniques have been developed to mitigate this issue, such as the mock-Chebyshev subset interpolation and the constrained mock-Chebyshev least-squares approximation. The high accuracy and the numerical stability achieved by these techniques motivate us to extend these methods to histopolation, a polynomial interpolation method based on segmental function averages. While classical polynomial interpolation relies on function evaluations at specific nodes, histopolation leverages averages of the function over subintervals. In this work, we introduce three types of mock-Chebyshev approaches for segmental interpolation and theoretically analyse the stability of their Lebesgue constants, which measure the numerical conditioning of the histopolation problem under small perturbations of the segments. We demonstrate that these segmental mock-Chebyshev approaches yield a quasi-optimal logarithmic growth of the Lebesgue constant in relevant scenarios. Additionally, we compare the performance of these new approximation techniques through various numerical experiments.
- Calcolo 59(4), Paper No. 37, 29 (2022)
- J. Comput. Appl. Math. 427, Paper No. 115117, 9 (2023). DOI 10.1016/j.cam.2023.115117. URL https://doi.org/10.1016/j.cam.2023.115117
- J. Comput. Phys. 428, 109964 (2021)
- Appl. Math. Comput. 210, 158–168 (2009)
- preprint (2024). Https://arxiv.org/pdf/2403.09378
- to appear in SIAM J. Numer. Anal. (2024)
- Dover Publications, Inc., New York (1975)
- J. Comput. Appl. Math. 280, 94–109 (2015)
- J. Comput. Appl. Math. 364, 112347 (2020)
- Dolomites Res. Notes Approx. 15, 35–44 (2022)
- Appl. Math. Lett. 134, 108328 (2022)
- Appl. Math. Lett. 125, 107732 (2022)
- J. Comput. Appl. Math. 450, 116010 (2024)
- BIT Numer. Math. 63, 24 (2023)
- J. Comput. Appl. Math. 447, 115886 (2024)
- Appl. Math. Lett. 152, 109010 (2024)
- Journal of Computational Physics 257, 1444–1471 (2014)
- SIAM J. Numer. Anal. 45(6), 2483–2509 (2007)
- Ibrahimoglu, B.A.: Lebesgue functions and Lebesgue constants in polynomial interpolation. J. Inequal. Appl. pp. 1–15 (2016)
- Ibrahimoglu, B.A.: A fast algorithm for computing the mock-Chebyshev nodes. J. Comput. Appl. Math. 373, 112336 (2020)
- Ibrahimoglu, B.A.: A new fast algorithm for computing the mock-Chebyshev nodes. Appl. Numer. Math. (2024)
- Dolomites Res. Notes Approx. 11, 1–9 (2018)
- Rivlin, T.J.: An introduction to the approximation of functions. Dover Publications, Inc., New York (1981)
- Runge, C.: Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten. Schlömilch Z. 46, 224–243 (1901)
- In: Spline functions and approximation theory (Proc. Sympos., Univ. Alberta, Edmonton, Alta., 1972), Internat. Ser. Numer. Math., Vol. 21, pp. 277–327. Birkhäuser Verlag, Basel-Stuttgart (1973)
- Ludovico Bruni Bruno (10 papers)
- Francesco Dell'Accio (9 papers)
- Wolfgang Erb (32 papers)
- Federico Nudo (7 papers)