Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Accelerating Learned Video Compression via Low-Resolution Representation Learning (2407.16418v1)

Published 23 Jul 2024 in eess.IV and cs.CV

Abstract: In recent years, the field of learned video compression has witnessed rapid advancement, exemplified by the latest neural video codecs DCVC-DC that has outperformed the upcoming next-generation codec ECM in terms of compression ratio. Despite this, learned video compression frameworks often exhibit low encoding and decoding speeds primarily due to their increased computational complexity and unnecessary high-resolution spatial operations, which hugely hinder their applications in reality. In this work, we introduce an efficiency-optimized framework for learned video compression that focuses on low-resolution representation learning, aiming to significantly enhance the encoding and decoding speeds. Firstly, we diminish the computational load by reducing the resolution of inter-frame propagated features obtained from reused features of decoded frames, including I-frames. We implement a joint training strategy for both the I-frame and P-frame models, further improving the compression ratio. Secondly, our approach efficiently leverages multi-frame priors for parameter prediction, minimizing computation at the decoding end. Thirdly, we revisit the application of the Online Encoder Update (OEU) strategy for high-resolution sequences, achieving notable improvements in compression ratio without compromising decoding efficiency. Our efficiency-optimized framework has significantly improved the balance between compression ratio and speed for learned video compression. In comparison to traditional codecs, our method achieves performance levels on par with the low-decay P configuration of the H.266 reference software VTM. Furthermore, when contrasted with DCVC-HEM, our approach delivers a comparable compression ratio while boosting encoding and decoding speeds by a factor of 3 and 7, respectively. On RTX 2080Ti, our method can decode each 1080p frame under 100ms.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube