Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Evolutionary Prompt Design for LLM-Based Post-ASR Error Correction (2407.16370v1)

Published 23 Jul 2024 in cs.CL, cs.SD, and eess.AS

Abstract: Building upon the strength of modern LLMs, generative error correction (GEC) has emerged as a promising paradigm that can elevate the performance of modern automatic speech recognition (ASR) systems. One representative approach is to leverage in-context learning to prompt LLMs so that a better hypothesis can be generated by the LLMs based on a carefully-designed prompt and an $N$-best list of hypotheses produced by ASR systems. However, it is yet unknown whether the existing prompts are the most effective ones for the task of post-ASR error correction. In this context, this paper first explores alternative prompts to identify an initial set of effective prompts, and then proposes to employ an evolutionary prompt optimization algorithm to refine the initial prompts. Evaluations results on the CHiME-4 subset of the Task $1$ of the SLT $2024$ GenSEC challenge show the effectiveness and potential of the proposed algorithms.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.