Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improving multidimensional projection quality with user-specific metrics and optimal scaling (2407.16328v1)

Published 23 Jul 2024 in cs.GR, cs.CV, and cs.HC

Abstract: The growing prevalence of high-dimensional data has fostered the development of multidimensional projection (MP) techniques, such as t-SNE, UMAP, and LAMP, for data visualization and exploration. However, conventional MP methods typically employ generic quality metrics, neglecting individual user preferences. This study proposes a new framework that tailors MP techniques based on user-specific quality criteria, enhancing projection interpretability. Our approach combines three visual quality metrics, stress, neighborhood preservation, and silhouette score, to create a composite metric for a precise MP evaluation. We then optimize the projection scale by maximizing the composite metric value. We conducted an experiment involving two users with different projection preferences, generating projections using t-SNE, UMAP, and LAMP. Users rate projections according to their criteria, producing two training sets. We derive optimal weights for each set and apply them to other datasets to determine the best projections per user. Our findings demonstrate that personalized projections effectively capture user preferences, fostering better data exploration and enabling more informed decision-making. This user-centric approach promotes advancements in multidimensional projection techniques that accommodate diverse user preferences and enhance interpretability.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube