Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Identifiable Latent Bandits: Leveraging observational data for personalized decision-making (2407.16239v4)

Published 23 Jul 2024 in cs.LG and stat.ML

Abstract: For many decision-making tasks, such as precision medicine, historical data alone are insufficient to determine the right choice for a new problem instance or patient. Online algorithms like multi-armed bandits can find optimal personalized decisions but are notoriously sample-hungry. In practice, training a bandit for a new individual from scratch is often infeasible, as the number of trials required is larger than the practical number of decision points. Latent bandits offer rapid exploration and personalization beyond what context variables can reveal, provided that a latent variable model can be learned consistently. In this work, we propose an identifiable latent bandit framework that leads to optimal decision-making with a shorter exploration time than classical bandits by learning from historical records of decisions and outcomes. Our method is based on nonlinear independent component analysis that provably identifies representations from observational data sufficient to infer the optimal action in new bandit instances. We verify this strategy in simulated and semi-synthetic environments, showing substantial improvement over online and offline learning baselines when identifying conditions are satisfied.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets