Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Channel-Partitioned Windowed Attention And Frequency Learning for Single Image Super-Resolution (2407.16232v2)

Published 23 Jul 2024 in cs.CV

Abstract: Recently, window-based attention methods have shown great potential for computer vision tasks, particularly in Single Image Super-Resolution (SISR). However, it may fall short in capturing long-range dependencies and relationships between distant tokens. Additionally, we find that learning on spatial domain does not convey the frequency content of the image, which is a crucial aspect in SISR. To tackle these issues, we propose a new Channel-Partitioned Attention Transformer (CPAT) to better capture long-range dependencies by sequentially expanding windows along the height and width of feature maps. In addition, we propose a novel Spatial-Frequency Interaction Module (SFIM), which incorporates information from spatial and frequency domains to provide a more comprehensive information from feature maps. This includes information about the frequency content and enhances the receptive field across the entire image. Experimental findings show the effectiveness of our proposed modules and architecture. In particular, CPAT surpasses current state-of-the-art methods by up to 0.31dB at x2 SR on Urban100.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com