Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Robust Privacy Amidst Innovation with Large Language Models Through a Critical Assessment of the Risks (2407.16166v2)

Published 23 Jul 2024 in cs.CL

Abstract: This study examines integrating EHRs and NLP with LLMs to improve healthcare data management and patient care. It focuses on using advanced models to create secure, HIPAA-compliant synthetic patient notes for biomedical research. The study used de-identified and re-identified MIMIC III datasets with GPT-3.5, GPT-4, and Mistral 7B to generate synthetic notes. Text generation employed templates and keyword extraction for contextually relevant notes, with one-shot generation for comparison. Privacy assessment checked PHI occurrence, while text utility was tested using an ICD-9 coding task. Text quality was evaluated with ROUGE and cosine similarity metrics to measure semantic similarity with source notes. Analysis of PHI occurrence and text utility via the ICD-9 coding task showed that the keyword-based method had low risk and good performance. One-shot generation showed the highest PHI exposure and PHI co-occurrence, especially in geographic location and date categories. The Normalized One-shot method achieved the highest classification accuracy. Privacy analysis revealed a critical balance between data utility and privacy protection, influencing future data use and sharing. Re-identified data consistently outperformed de-identified data. This study demonstrates the effectiveness of keyword-based methods in generating privacy-protecting synthetic clinical notes that retain data usability, potentially transforming clinical data-sharing practices. The superior performance of re-identified over de-identified data suggests a shift towards methods that enhance utility and privacy by using dummy PHIs to perplex privacy attacks.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.