Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improved Few-Shot Image Classification Through Multiple-Choice Questions (2407.16145v1)

Published 23 Jul 2024 in cs.LG and cs.CV

Abstract: Through a simple multiple choice language prompt a VQA model can operate as a zero-shot image classifier, producing a classification label. Compared to typical image encoders, VQA models offer an advantage: VQA-produced image embeddings can be infused with the most relevant visual information through tailored language prompts. Nevertheless, for most tasks, zero-shot VQA performance is lacking, either because of unfamiliar category names, or dissimilar pre-training data and test data distributions. We propose a simple method to boost VQA performance for image classification using only a handful of labeled examples and a multiple-choice question. This few-shot method is training-free and maintains the dynamic and flexible advantages of the VQA model. Rather than relying on the final language output, our approach uses multiple-choice questions to extract prompt-specific latent representations, which are enriched with relevant visual information. These representations are combined to create a final overall image embedding, which is decoded via reference to latent class prototypes constructed from the few labeled examples. We demonstrate this method outperforms both pure visual encoders and zero-shot VQA baselines to achieve impressive performance on common few-shot tasks including MiniImageNet, Caltech-UCSD Birds, and CIFAR-100. Finally, we show our approach does particularly well in settings with numerous diverse visual attributes such as the fabric, article-style, texture, and view of different articles of clothing, where other few-shot approaches struggle, as we can tailor our image representations only on the semantic features of interest.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: