Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Color Refinement for Relational Structures (2407.16022v1)

Published 22 Jul 2024 in cs.DS, cs.DM, and cs.LO

Abstract: Color Refinement, also known as Naive Vertex Classification, is a classical method to distinguish graphs by iteratively computing a coloring of their vertices. While it is mainly used as an imperfect way to test for isomorphism, the algorithm permeated many other, seemingly unrelated, areas of computer science. The method is algorithmically simple, and it has a well-understood distinguishing power: It is logically characterized by Cai, F\"urer and Immerman (1992), who showed that it distinguishes precisely those graphs that can be distinguished by a sentence of first-order logic with counting quantifiers and only two variables. A combinatorial characterization is given by Dvo\v{r}\'ak (2010), who shows that it distinguishes precisely those graphs that can be distinguished by the number of homomorphisms from some tree. In this paper, we introduce Relational Color Refinement (RCR, for short), a generalization of the Color Refinement method from graphs to arbitrary relational structures, whose distinguishing power admits the equivalent combinatorial and logical characterizations as Color Refinement has on graphs: We show that RCR distinguishes precisely those structures that can be distinguished by the number of homomorphisms from an acyclic relational structure. Further, we show that RCR distinguishes precisely those structures that can be distinguished by a sentence of the guarded fragment of first-order logic with counting quantifiers.

Summary

We haven't generated a summary for this paper yet.