Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Color Refinement for Relational Structures (2407.16022v2)

Published 22 Jul 2024 in cs.DS, cs.DM, and cs.LO

Abstract: Color Refinement, also known as Naive Vertex Classification, is a classical method to distinguish graphs by iteratively computing a coloring of their vertices. While it is mainly used as an imperfect way to test for isomorphism, the algorithm permeated many other, seemingly unrelated, areas of computer science. The method is algorithmically simple, and it has a well-understood distinguishing power: It is logically characterized by Cai, F\"urer and Immerman (1992), who showed that it distinguishes precisely those graphs that can be distinguished by a sentence of first-order logic with counting quantifiers and only two variables. A combinatorial characterization is given by Dvo\v{r}\'ak (2010), who shows that it distinguishes precisely those graphs that can be distinguished by the number of homomorphisms from some tree. In this paper, we introduce Relational Color Refinement (RCR, for short), a generalization of the Color Refinement method from graphs to arbitrary relational structures, whose distinguishing power admits the equivalent combinatorial and logical characterizations as Color Refinement has on graphs: We show that RCR distinguishes precisely those structures that can be distinguished by the number of homomorphisms from an acyclic relational structure. Further, we show that RCR distinguishes precisely those structures that can be distinguished by a sentence of the guarded fragment of first-order logic with counting quantifiers. Additionally, we show that for every fixed finite relational signature, RCR can be implemented to run on structures of that signature in time $O(N\cdot \log N)$, where $N$ denotes the number of tuples present in the structure.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.