Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Color Refinement for Relational Structures (2407.16022v2)

Published 22 Jul 2024 in cs.DS, cs.DM, and cs.LO

Abstract: Color Refinement, also known as Naive Vertex Classification, is a classical method to distinguish graphs by iteratively computing a coloring of their vertices. While it is mainly used as an imperfect way to test for isomorphism, the algorithm permeated many other, seemingly unrelated, areas of computer science. The method is algorithmically simple, and it has a well-understood distinguishing power: It is logically characterized by Cai, F\"urer and Immerman (1992), who showed that it distinguishes precisely those graphs that can be distinguished by a sentence of first-order logic with counting quantifiers and only two variables. A combinatorial characterization is given by Dvo\v{r}\'ak (2010), who shows that it distinguishes precisely those graphs that can be distinguished by the number of homomorphisms from some tree. In this paper, we introduce Relational Color Refinement (RCR, for short), a generalization of the Color Refinement method from graphs to arbitrary relational structures, whose distinguishing power admits the equivalent combinatorial and logical characterizations as Color Refinement has on graphs: We show that RCR distinguishes precisely those structures that can be distinguished by the number of homomorphisms from an acyclic relational structure. Further, we show that RCR distinguishes precisely those structures that can be distinguished by a sentence of the guarded fragment of first-order logic with counting quantifiers. Additionally, we show that for every fixed finite relational signature, RCR can be implemented to run on structures of that signature in time $O(N\cdot \log N)$, where $N$ denotes the number of tuples present in the structure.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.