Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

High-dimensional sparse trigonometric approximation in the uniform norm and consequences for sampling recovery (2407.15965v1)

Published 22 Jul 2024 in math.NA and cs.NA

Abstract: Recent findings by Jahn, T. Ullrich, Voigtlaender [10] relate non-linear sampling numbers for the square norm to quantities involving trigonometric best $m-$term approximation errors in the uniform norm. Here we establish new results for sparse trigonometric approximation with respect to the high-dimensional setting, where the influence of the dimension $d$ has to be controlled. In particular, we focus on best $m-$term trigonometric approximation for (unweighted) Wiener classes in $L_q$ and give precise constants. Our main results are approximation guarantees where the number of terms $m$ scales at most quadratic in the inverse accuracy $1/\varepsilon$. Providing a refined version of the classical Nikol'skij inequality we are able to extrapolate the $L_q$-result to $L_\infty$ while limiting the influence of the dimension to a $\sqrt{d}$-factor and an additonal $\log$-term in the size of the (rectangular) spectrum. This has consequences for the tractable sampling recovery via $\ell_1$-minimization of functions belonging to certain Besov classes with bounded mixed smoothness. This complements polynomial tractability results recently given by Krieg [12].

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.