Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 142 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Importance Sampling-Guided Meta-Training for Intelligent Agents in Highly Interactive Environments (2407.15839v2)

Published 22 Jul 2024 in cs.RO and cs.AI

Abstract: Training intelligent agents to navigate highly interactive environments presents significant challenges. While guided meta reinforcement learning (RL) approach that first trains a guiding policy to train the ego agent has proven effective in improving generalizability across scenarios with various levels of interaction, the state-of-the-art method tends to be overly sensitive to extreme cases, impairing the agents' performance in the more common scenarios. This study introduces a novel training framework that integrates guided meta RL with importance sampling (IS) to optimize training distributions iteratively for navigating highly interactive driving scenarios, such as T-intersections or roundabouts. Unlike traditional methods that may underrepresent critical interactions or overemphasize extreme cases during training, our approach strategically adjusts the training distribution towards more challenging driving behaviors using IS proposal distributions and applies the importance ratio to de-bias the result. By estimating a naturalistic distribution from real-world datasets and employing a mixture model for iterative training refinements, the framework ensures a balanced focus across common and extreme driving scenarios. Experiments conducted with both synthetic and naturalistic datasets demonstrate both accelerated training and performance improvements under highly interactive driving tasks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: