Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Towards Effective Collaboration between Software Engineers and Data Scientists developing Machine Learning-Enabled Systems (2407.15821v1)

Published 22 Jul 2024 in cs.SE

Abstract: Incorporating Machine Learning (ML) into existing systems is a demand that has grown among several organizations. However, the development of ML-enabled systems encompasses several social and technical challenges, which must be addressed by actors with different fields of expertise working together. This paper has the objective of understanding how to enhance the collaboration between two key actors in building these systems: software engineers and data scientists. We conducted two focus group sessions with experienced data scientists and software engineers working on real-world ML-enabled systems to assess the relevance of different recommendations for specific technical tasks. Our research has found that collaboration between these actors is important for effectively developing ML-enabled systems, especially when defining data access and ML model deployment. Participants provided concrete examples of how recommendations depicted in the literature can benefit collaboration during different tasks. For example, defining clear responsibilities for each team member and creating concise documentation can improve communication and overall performance. Our study contributes to a better understanding of how to foster effective collaboration between software engineers and data scientists creating ML-enabled systems.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com