Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Unsupervised Robust Cross-Lingual Entity Alignment via Neighbor Triple Matching with Entity and Relation Texts (2407.15588v5)

Published 22 Jul 2024 in cs.CL and cs.AI

Abstract: Cross-lingual entity alignment (EA) enables the integration of multiple knowledge graphs (KGs) across different languages, providing users with seamless access to diverse and comprehensive knowledge. Existing methods, mostly supervised, face challenges in obtaining labeled entity pairs. To address this, recent studies have shifted towards self-supervised and unsupervised frameworks. Despite their effectiveness, these approaches have limitations: (1) Relation passing: mainly focusing on the entity while neglecting the semantic information of relations, (2) Isomorphic assumption: assuming isomorphism between source and target graphs, which leads to noise and reduced alignment accuracy, and (3) Noise vulnerability: susceptible to noise in the textual features, especially when encountering inconsistent translations or Out-of-Vocabulary (OOV) problems. In this paper, we propose ERAlign, an unsupervised and robust cross-lingual EA pipeline that jointly performs Entity-level and Relation-level Alignment by neighbor triple matching strategy using semantic textual features of relations and entities. Its refinement step iteratively enhances results by fusing entity-level and relation-level alignments based on neighbor triple matching. The additional verification step examines the entities' neighbor triples as the linearized text. This Align-then-Verify pipeline rigorously assesses alignment results, achieving near-perfect alignment even in the presence of noisy textual features of entities. Our extensive experiments demonstrate that the robustness and general applicability of ERAlign improved the accuracy and effectiveness of EA tasks, contributing significantly to knowledge-oriented applications.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets