Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TextureCrop: Enhancing Synthetic Image Detection through Texture-based Cropping (2407.15500v2)

Published 22 Jul 2024 in cs.CV

Abstract: Generative AI technologies produce increasingly realistic imagery, which, despite its potential for creative applications, can also be misused to produce misleading and harmful content. This renders Synthetic Image Detection (SID) methods essential for identifying AI-generated content online. State-of-the-art SID methods typically resize or center-crop input images due to architectural or computational constraints, which hampers the detection of artifacts that appear in high-resolution images. To address this limitation, we propose TextureCrop, an image pre-processing component that can be plugged in any pre-trained SID model to improve its performance. By focusing on high-frequency image parts where generative artifacts are prevalent, TextureCrop enhances SID performance with manageable memory requirements. Experimental results demonstrate a consistent improvement in AUC across various detectors by 6.1% compared to center cropping and by 15% compared to resizing, across high-resolution images from the Forensynths, Synthbuster and TWIGMA datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.