Developing a Reliable, General-Purpose Hallucination Detection and Mitigation Service: Insights and Lessons Learned (2407.15441v1)
Abstract: Hallucination, a phenomenon where LLMs produce output that is factually incorrect or unrelated to the input, is a major challenge for LLM applications that require accuracy and dependability. In this paper, we introduce a reliable and high-speed production system aimed at detecting and rectifying the hallucination issue within LLMs. Our system encompasses named entity recognition (NER), natural language inference (NLI), span-based detection (SBD), and an intricate decision tree-based process to reliably detect a wide range of hallucinations in LLM responses. Furthermore, our team has crafted a rewriting mechanism that maintains an optimal mix of precision, response time, and cost-effectiveness. We detail the core elements of our framework and underscore the paramount challenges tied to response time, availability, and performance metrics, which are crucial for real-world deployment of these technologies. Our extensive evaluation, utilizing offline data and live production traffic, confirms the efficacy of our proposed framework and service.
- Song Wang (313 papers)
- Xun Wang (96 papers)
- Jie Mei (42 papers)
- Yujia Xie (29 papers)
- Sean Muarray (1 paper)
- Zhang Li (26 papers)
- Lingfeng Wu (2 papers)
- Si-Qing Chen (22 papers)
- Wayne Xiong (10 papers)