Papers
Topics
Authors
Recent
2000 character limit reached

Deep State Space Recurrent Neural Networks for Time Series Forecasting (2407.15236v1)

Published 21 Jul 2024 in cs.LG

Abstract: We explore various neural network architectures for modeling the dynamics of the cryptocurrency market. Traditional linear models often fall short in accurately capturing the unique and complex dynamics of this market. In contrast, Deep Neural Networks (DNNs) have demonstrated considerable proficiency in time series forecasting. This papers introduces novel neural network framework that blend the principles of econometric state space models with the dynamic capabilities of Recurrent Neural Networks (RNNs). We propose state space models using Long Short Term Memory (LSTM), Gated Residual Units (GRU) and Temporal Kolmogorov-Arnold Networks (TKANs). According to the results, TKANs, inspired by Kolmogorov-Arnold Networks (KANs) and LSTM, demonstrate promising outcomes.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.