Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Deep State Space Recurrent Neural Networks for Time Series Forecasting (2407.15236v1)

Published 21 Jul 2024 in cs.LG

Abstract: We explore various neural network architectures for modeling the dynamics of the cryptocurrency market. Traditional linear models often fall short in accurately capturing the unique and complex dynamics of this market. In contrast, Deep Neural Networks (DNNs) have demonstrated considerable proficiency in time series forecasting. This papers introduces novel neural network framework that blend the principles of econometric state space models with the dynamic capabilities of Recurrent Neural Networks (RNNs). We propose state space models using Long Short Term Memory (LSTM), Gated Residual Units (GRU) and Temporal Kolmogorov-Arnold Networks (TKANs). According to the results, TKANs, inspired by Kolmogorov-Arnold Networks (KANs) and LSTM, demonstrate promising outcomes.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: