Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

D$^4$-VTON: Dynamic Semantics Disentangling for Differential Diffusion based Virtual Try-On (2407.15111v1)

Published 21 Jul 2024 in cs.CV

Abstract: In this paper, we introduce D$4$-VTON, an innovative solution for image-based virtual try-on. We address challenges from previous studies, such as semantic inconsistencies before and after garment warping, and reliance on static, annotation-driven clothing parsers. Additionally, we tackle the complexities in diffusion-based VTON models when handling simultaneous tasks like inpainting and denoising. Our approach utilizes two key technologies: Firstly, Dynamic Semantics Disentangling Modules (DSDMs) extract abstract semantic information from garments to create distinct local flows, improving precise garment warping in a self-discovered manner. Secondly, by integrating a Differential Information Tracking Path (DITP), we establish a novel diffusion-based VTON paradigm. This path captures differential information between incomplete try-on inputs and their complete versions, enabling the network to handle multiple degradations independently, thereby minimizing learning ambiguities and achieving realistic results with minimal overhead. Extensive experiments demonstrate that D$4$-VTON significantly outperforms existing methods in both quantitative metrics and qualitative evaluations, demonstrating its capability in generating realistic images and ensuring semantic consistency.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.