Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Experimental demonstration of reconstructing quantum states with generative models (2407.15102v1)

Published 21 Jul 2024 in quant-ph

Abstract: Quantum state tomography, a process that reconstructs a quantum state from measurements on an ensemble of identically prepared copies, plays a crucial role in benchmarking quantum devices. However, brute-force approaches to quantum state tomography would become impractical for large systems, as the required resources scale exponentially with the system size. Here, we explore a machine learning approach and report an experimental demonstration of reconstructing quantum states based on neural network generative models with an array of programmable superconducting transmon qubits. In particular, we experimentally prepare the Greenberger-Horne-Zeilinger states and random states up to five qubits and demonstrate that the machine learning approach can efficiently reconstruct these states with the number of required experimental samples scaling linearly with system size. Our results experimentally showcase the intriguing potential for exploiting machine learning techniques in validating and characterizing complex quantum devices, offering a valuable guide for the future development of quantum technologies.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com