Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multi-Agent Causal Discovery Using Large Language Models (2407.15073v3)

Published 21 Jul 2024 in cs.AI and cs.CL

Abstract: Causal discovery aims to identify causal relationships between variables and is a critical research area in machine learning. Traditional methods focus on statistical or machine learning algorithms to uncover causal links from structured data, often overlooking the valuable contextual information provided by metadata. LLMs have shown promise in creating unified causal discovery frameworks by incorporating both structured data and metadata. However, their potential in multi-agent settings remains largely unexplored. To address this gap, we introduce the Multi-Agent Causal Discovery Framework (MAC), which consists of two key modules: the Debate-Coding Module (DCM) and the Meta-Debate Module (MDM). The DCM begins with a multi-agent debating and coding process, where agents use both structured data and metadata to collaboratively select the most suitable statistical causal discovery (SCD) method. The selected SCD is then applied to the structured data to generate an initial causal graph. This causal graph is transformed into causal metadata through the Meta Fusion mechanism. With all the metadata, MDM then refines the causal structure by leveraging a multi-agent debating framework. Extensive experiments across five datasets demonstrate that MAC outperforms both traditional statistical causal discovery methods and existing LLM-based approaches, achieving state-of-the-art performance.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com