Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Relational Database Augmented Large Language Model (2407.15071v1)

Published 21 Jul 2024 in cs.DB and cs.CL

Abstract: LLMs excel in many NLP tasks. However, since LLMs can only incorporate new knowledge through training or supervised fine-tuning processes, they are unsuitable for applications that demand precise, up-to-date, and private information not available in the training corpora. This precise, up-to-date, and private information is typically stored in relational databases. Thus, a promising solution is to augment LLMs with the inclusion of relational databases as external memory. This can ensure the timeliness, correctness, and consistency of data, and assist LLMs in performing complex arithmetic operations beyond their inherent capabilities. However, bridging the gap between LLMs and relational databases is challenging. It requires the awareness of databases and data values stored in databases to select correct databases and issue correct SQL queries. Besides, it is necessary for the external memory to be independent of the LLM to meet the needs of real-world applications. We introduce a novel LLM-agnostic memory architecture comprising a database selection memory, a data value memory, and relational databases. And we design an elegant pipeline to retrieve information from it. Besides, we carefully design the prompts to instruct the LLM to maximize the framework's potential. To evaluate our method, we compose a new dataset with various types of questions. Experimental results show that our framework enables LLMs to effectively answer database-related questions, which is beyond their direct ability.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube