Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

LSReGen: Large-Scale Regional Generator via Backward Guidance Framework (2407.15066v1)

Published 21 Jul 2024 in cs.CV

Abstract: In recent years, advancements in AIGC (Artificial Intelligence Generated Content) technology have significantly enhanced the capabilities of large text-to-image models. Despite these improvements, controllable image generation remains a challenge. Current methods, such as training, forward guidance, and backward guidance, have notable limitations. The first two approaches either demand substantial computational resources or produce subpar results. The third approach depends on phenomena specific to certain model architectures, complicating its application to large-scale image generation.To address these issues, we propose a novel controllable generation framework that offers a generalized interpretation of backward guidance without relying on specific assumptions. Leveraging this framework, we introduce LSReGen, a large-scale layout-to-image method designed to generate high-quality, layout-compliant images. Experimental results show that LSReGen outperforms existing methods in the large-scale layout-to-image task, underscoring the effectiveness of our proposed framework. Our code and models will be open-sourced.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.