Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Training Zero-Shot Generalizable End-to-End Task-Oriented Dialog System Without Turn-level Dialog Annotations (2407.15055v2)

Published 21 Jul 2024 in cs.CL

Abstract: Task-oriented dialogue (TOD) systems enable users to achieve their goals through natural language interactions. Traditionally, these systems have relied on turn-level manually annotated metadata, such as dialogue states and policy annotations, which are expensive, time-consuming, and often inconsistent or error-prone. This dependence limits the potential to leverage vast amounts of readily available conversational data for training TOD systems. Additionally, a critical challenge in TOD system design is determining when and how to access and integrate information from external sources. Current approaches typically expect this information to be provided alongside the dialogue context, rather than learning to identify and retrieve it autonomously. While pre-trained LLMs have been used to develop TOD systems, their potential to train such systems without laborious annotations remains largely unexplored. This work employs multi-task instruction fine-tuning to create more efficient and scalable TOD systems that can effectively leverage natural language conversational data without manual annotations, while autonomously managing external information retrieval. Our extensive experimental evaluations, using three diverse TOD datasets and three LLMs of varying sizes, demonstrate that our approach can generalize to new, unseen domains. Notably, our approach outperforms both state-of-the-art models trained on annotated data and billion-scale parameter off-the-shelf ChatGPT models.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube