Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Sim-CLIP: Unsupervised Siamese Adversarial Fine-Tuning for Robust and Semantically-Rich Vision-Language Models (2407.14971v2)

Published 20 Jul 2024 in cs.CV, cs.AI, cs.CL, and cs.LG

Abstract: Vision-LLMs (VLMs) have achieved significant strides in recent times specially in multimodal tasks, yet they remain susceptible to adversarial attacks on their vision components. To address this, we propose Sim-CLIP, an unsupervised adversarial fine-tuning method that enhances the robustness of the widely-used CLIP vision encoder against such attacks while maintaining semantic richness and specificity. By employing a Siamese architecture with cosine similarity loss, Sim-CLIP learns semantically meaningful and attack-resilient visual representations without requiring large batch sizes or momentum encoders. Our results demonstrate that VLMs enhanced with Sim-CLIP's fine-tuned CLIP encoder exhibit significantly enhanced robustness against adversarial attacks, while preserving semantic meaning of the perturbed images. Notably, Sim-CLIP does not require additional training or fine-tuning of the VLM itself; replacing the original vision encoder with our fine-tuned Sim-CLIP suffices to provide robustness. This work underscores the significance of reinforcing foundational models like CLIP to safeguard the reliability of downstream VLM applications, paving the way for more secure and effective multimodal systems.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: