Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 352 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

AgileDART: An Agile and Scalable Edge Stream Processing Engine (2407.14953v2)

Published 20 Jul 2024 in cs.DB and cs.DC

Abstract: Edge applications generate a large influx of sensor data on massive scales, and these massive data streams must be processed shortly to derive actionable intelligence. However, traditional data processing systems are not well-suited for these edge applications as they often do not scale well with a large number of concurrent stream queries, do not support low-latency processing under limited edge computing resources, and do not adapt to the level of heterogeneity and dynamicity commonly present in edge computing environments. As such, we present AgileDart, an agile and scalable edge stream processing engine that enables fast stream processing of many concurrently running low-latency edge applications' queries at scale in dynamic, heterogeneous edge environments. The novelty of our work lies in a dynamic dataflow abstraction that leverages distributed hash table-based peer-to-peer overlay networks to autonomously place, chain, and scale stream operators to reduce query latencies, adapt to workload variations, and recover from failures and a bandit-based path planning model that re-plans the data shuffling paths to adapt to unreliable and heterogeneous edge networks. We show that AgileDart outperforms Storm and EdgeWise on query latency and significantly improves scalability and adaptability when processing many real-world edge stream applications' queries.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube