POGEMA: A Benchmark Platform for Cooperative Multi-Agent Pathfinding (2407.14931v3)
Abstract: Multi-agent reinforcement learning (MARL) has recently excelled in solving challenging cooperative and competitive multi-agent problems in various environments, typically involving a small number of agents and full observability. Moreover, a range of crucial robotics-related tasks, such as multi-robot pathfinding, which have traditionally been approached with classical non-learnable methods (e.g., heuristic search), are now being suggested for solution using learning-based or hybrid methods. However, in this domain, it remains difficult, if not impossible, to conduct a fair comparison between classical, learning-based, and hybrid approaches due to the lack of a unified framework that supports both learning and evaluation. To address this, we introduce POGEMA, a comprehensive set of tools that includes a fast environment for learning, a problem instance generator, a collection of predefined problem instances, a visualization toolkit, and a benchmarking tool for automated evaluation. We also introduce and define an evaluation protocol that specifies a range of domain-related metrics, computed based on primary evaluation indicators (such as success rate and path length), enabling a fair multi-fold comparison. The results of this comparison, which involves a variety of state-of-the-art MARL, search-based, and hybrid methods, are presented.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.