Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

AP-MIONet: Asymptotic-preserving multiple-input neural operators for capturing the high-field limits of collisional kinetic equations (2407.14921v1)

Published 20 Jul 2024 in math.NA and cs.NA

Abstract: In kinetic equations, external fields play a significant role, particularly when their strength is sufficient to balance collision effects, leading to the so-called high-field regime. Two typical examples are the Vlasov-Poisson-Fokker-Planck (VPFP) system in plasma physics and the Boltzmann equation in semiconductor physics. In this paper, we propose a generic asymptotic-preserving multiple-input DeepONet (AP-MIONet) method for solving these two kinetic equations with variable parameters in the high-field regime. Our method aims to tackle two major challenges in this regime: the additional variable parameters introduced by electric fields, and the absence of an explicit local equilibrium, which is a key component of asymptotic-preserving (AP) schemes. We leverage the multiple-input DeepONet (MIONet) architecture to accommodate additional parameters, and formulate the AP loss function by incorporating both the mass conservation law and the original kinetic system. This strategy can avoid reliance on the explicit local equilibrium, preserve the mass and adapt to non-equilibrium states. We demonstrate the effectiveness and efficiency of the proposed method through extensive numerical examples.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)