Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Bernstein-von Mises theorems for time evolution equations (2407.14781v2)

Published 20 Jul 2024 in math.ST, cs.NA, math.AP, math.NA, math.PR, and stat.TH

Abstract: We consider a class of infinite-dimensional dynamical systems driven by non-linear parabolic partial differential equations with initial condition $\theta$ modelled by a Gaussian process prior' probability measure. Given discrete samples of the state of the system evolving in space-time, one obtains updatedposterior' measures on a function space containing all possible trajectories. We give a general set of conditions under which these non-Gaussian posterior distributions are approximated, in Wasserstein distance for the supremum-norm metric, by the law of a Gaussian random function. We demonstrate the applicability of our results to periodic non-linear reaction diffusion equations \begin{align*} \frac{\partial}{\partial t} u - \Delta u &= f(u) \ u(0) &= \theta \end{align*} where $f$ is any smooth and compactly supported reaction function. In this case the limiting Gaussian measure can be characterised as the solution of a time-dependent Schr\"odinger equation with `rough' Gaussian initial conditions whose covariance operator we describe.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)