Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Bernstein-von Mises theorems for time evolution equations (2407.14781v2)

Published 20 Jul 2024 in math.ST, cs.NA, math.AP, math.NA, math.PR, and stat.TH

Abstract: We consider a class of infinite-dimensional dynamical systems driven by non-linear parabolic partial differential equations with initial condition $\theta$ modelled by a Gaussian process prior' probability measure. Given discrete samples of the state of the system evolving in space-time, one obtains updatedposterior' measures on a function space containing all possible trajectories. We give a general set of conditions under which these non-Gaussian posterior distributions are approximated, in Wasserstein distance for the supremum-norm metric, by the law of a Gaussian random function. We demonstrate the applicability of our results to periodic non-linear reaction diffusion equations \begin{align*} \frac{\partial}{\partial t} u - \Delta u &= f(u) \ u(0) &= \theta \end{align*} where $f$ is any smooth and compactly supported reaction function. In this case the limiting Gaussian measure can be characterised as the solution of a time-dependent Schr\"odinger equation with `rough' Gaussian initial conditions whose covariance operator we describe.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube