Bernstein-von Mises theorems for time evolution equations (2407.14781v2)
Abstract: We consider a class of infinite-dimensional dynamical systems driven by non-linear parabolic partial differential equations with initial condition $\theta$ modelled by a Gaussian process prior' probability measure. Given discrete samples of the state of the system evolving in space-time, one obtains updated
posterior' measures on a function space containing all possible trajectories. We give a general set of conditions under which these non-Gaussian posterior distributions are approximated, in Wasserstein distance for the supremum-norm metric, by the law of a Gaussian random function. We demonstrate the applicability of our results to periodic non-linear reaction diffusion equations \begin{align*} \frac{\partial}{\partial t} u - \Delta u &= f(u) \ u(0) &= \theta \end{align*} where $f$ is any smooth and compactly supported reaction function. In this case the limiting Gaussian measure can be characterised as the solution of a time-dependent Schr\"odinger equation with `rough' Gaussian initial conditions whose covariance operator we describe.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.