Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Implementing Fairness in AI Classification: The Role of Explainability (2407.14766v2)

Published 20 Jul 2024 in cs.LG, cs.AI, and cs.CY

Abstract: In this paper, we propose a philosophical and experimental investigation of the problem of AI fairness in classification. We argue that implementing fairness in AI classification involves more work than just operationalizing a fairness metric. It requires establishing the explainability of the classification model chosen and of the principles behind it. Specifically, it involves making the training processes transparent, determining what outcomes the fairness criteria actually produce, and assessing their trade-offs by comparison with closely related models that would lead to a different outcome. To exemplify this methodology, we trained a model and developed a tool for disparity detection and fairness interventions, the package FairDream. While FairDream is set to enforce Demographic Parity, experiments reveal that it fulfills the constraint of Equalized Odds. The algorithm is thus more conservative than the user might expect. To justify this outcome, we first clarify the relation between Demographic Parity and Equalized Odds as fairness criteria. We then explain FairDream's reweighting method and justify the trade-offs reached by FairDream by a benchmark comparison with closely related GridSearch models. We draw conclusions regarding the way in which these explanatory steps can make an AI model trustworthy.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets