Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Data Augmentation in Graph Neural Networks: The Role of Generated Synthetic Graphs (2407.14765v1)

Published 20 Jul 2024 in cs.LG, cs.AI, cs.DB, cs.IT, and math.IT

Abstract: Graphs are crucial for representing interrelated data and aiding predictive modeling by capturing complex relationships. Achieving high-quality graph representation is important for identifying linked patterns, leading to improvements in Graph Neural Networks (GNNs) to better capture data structures. However, challenges such as data scarcity, high collection costs, and ethical concerns limit progress. As a result, generative models and data augmentation have become more and more popular. This study explores using generated graphs for data augmentation, comparing the performance of combining generated graphs with real graphs, and examining the effect of different quantities of generated graphs on graph classification tasks. The experiments show that balancing scalability and quality requires different generators based on graph size. Our results introduce a new approach to graph data augmentation, ensuring consistent labels and enhancing classification performance.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.