Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Human-Interpretable Adversarial Prompt Attack on Large Language Models with Situational Context (2407.14644v2)

Published 19 Jul 2024 in cs.CL

Abstract: Previous research on testing the vulnerabilities in LLMs using adversarial attacks has primarily focused on nonsensical prompt injections, which are easily detected upon manual or automated review (e.g., via byte entropy). However, the exploration of innocuous human-understandable malicious prompts augmented with adversarial injections remains limited. In this research, we explore converting a nonsensical suffix attack into a sensible prompt via a situation-driven contextual re-writing. This allows us to show suffix conversion without any gradients, using only LLMs to perform the attacks, and thus better understand the scope of possible risks. We combine an independent, meaningful adversarial insertion and situations derived from movies to check if this can trick an LLM. The situations are extracted from the IMDB dataset, and prompts are defined following a few-shot chain-of-thought prompting. Our approach demonstrates that a successful situation-driven attack can be executed on both open-source and proprietary LLMs. We find that across many LLMs, as few as 1 attempt produces an attack and that these attacks transfer between LLMs.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets