Papers
Topics
Authors
Recent
2000 character limit reached

Generalization Error Analysis of Deep Backward Dynamic Programming for Solving Nonlinear PDEs (2407.14566v1)

Published 19 Jul 2024 in math.NA and cs.NA

Abstract: We explore the application of the quasi-Monte Carlo (QMC) method in deep backward dynamic programming (DBDP) (Hure et al. 2020) for numerically solving high-dimensional nonlinear partial differential equations (PDEs). Our study focuses on examining the generalization error as a component of the total error in the DBDP framework, discovering that the rate of convergence for the generalization error is influenced by the choice of sampling methods. Specifically, for a given batch size $m$, the generalization error under QMC methods exhibits a convergence rate of $O(m{-1+\varepsilon})$, where $\varepsilon$ can be made arbitrarily small. This rate is notably more favorable than that of the traditional Monte Carlo (MC) methods, which is $O(m{-1/2+\varepsilon})$. Our theoretical analysis shows that the generalization error under QMC methods achieves a higher order of convergence than their MC counterparts. Numerical experiments demonstrate that QMC indeed surpasses MC in delivering solutions that are both more precise and stable.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.