Emergent Mind

Abstract

Scenario-based optimization and control has proven to be an efficient approach to account for system uncertainty. In particular, the performance of scenario-based model predictive control (MPC) schemes depends on the accuracy of uncertainty quantification. However, current learning- and scenario-based MPC (sMPC) approaches employ a single timeinvariant probabilistic model (learned offline), which may not accurately describe time-varying uncertainties. Instead, this paper presents a model-agnostic meta-learning (MAML) of Bayesian neural networks (BNN) for adaptive uncertainty quantification that would be subsequently used for adaptive-scenario-tree model predictive control design of nonlinear systems with unknown dynamics to enhance control performance. In particular, the proposed approach learns both a global BNN model and an updating law to refine the BNN model. At each time step, the updating law transforms the global BNN model into more precise local BNN models in real time. The adapted local model is then used to generate scenarios for sMPC design at each time step. A probabilistic safety certificate is incorporated in the scenario generation to ensure that the trajectories of the generated scenarios contain the real trajectory of the system and that all the scenarios adhere to the constraints with a high probability. Experiments using closed-loop simulations of a numerical example demonstrate that the proposed approach can improve the performance of scenario-based MPC compared to using only one BNN model learned offline for all time steps.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.