Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Mixture of Experts with Mixture of Precisions for Tuning Quality of Service (2407.14417v2)

Published 19 Jul 2024 in cs.DC, cs.AI, cs.LG, and cs.PF

Abstract: The increasing demand for deploying large Mixture-of-Experts (MoE) models in resource-constrained environments necessitates efficient approaches to address their high memory and computational requirements challenges. Moreover, given that tasks come in different user-defined constraints and the available resources change over time in multi-tenant environments, it is necessary to design an approach which provides a flexible configuration space. This paper presents an adaptive serving approach for the efficient deployment of MoE models, capitalizing on partial quantization of the experts. By dynamically determining the number of quantized experts and their distribution across CPU and GPU, our approach explores the Pareto frontier and offers a fine-grained range of configurations for tuning throughput and model quality. Our evaluation on an NVIDIA A100 GPU using a Mixtral 8x7B MoE model for three LLMling benchmarks demonstrates that the throughput of token generation can be adjusted from 0.63 to 13.00 token per second. This enhancement comes with a marginal perplexity increase of 3.81 to 4.00, 13.59 to 14.17, and 7.24 to 7.40 for WikiText2, PTB, and C4 datasets respectively under maximum quantization. These results highlight the practical applicability of our approach in dynamic and accuracy-sensitive applications where both memory usage and output quality are important.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.