Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Equivariant Symmetries for Aided Inertial Navigation (2407.14297v1)

Published 19 Jul 2024 in cs.RO, cs.SY, and eess.SY

Abstract: Respecting the geometry of the underlying system and exploiting its symmetry have been driving concepts in deriving modern geometric filters for inertial navigation systems (INSs). Despite their success, the explicit treatment of inertial measurement unit (IMU) biases remains challenging, unveiling a gap in the current theory of filter design. In response to this gap, this dissertation builds upon the recent theory of equivariant systems to address and overcome the limitations in existing methodologies. The goal is to identify new symmetries of inertial navigation systems that include a geometric treatment of IMU biases and exploit them to design filtering algorithms that outperform state-of-the-art solutions in terms of accuracy, convergence rate, robustness, and consistency. This dissertation leverages the semi-direct product rule and introduces the tangent group for inertial navigation systems as the first equivariant symmetry that properly accounts for IMU biases. Based on that, we show that it is possible to derive an equivariant filter (EqF) algorithm with autonomous navigation error dynamics. The resulting filter demonstrates superior to state-of-the-art solutions. Through a comprehensive analysis of various symmetries of inertial navigation systems, we formalized the concept that every filter can be derived as an EqF with a specific choice of symmetry. This underlines the fundamental role of symmetry in determining filter performance. This dissertation advances the understanding of equivariant symmetries in the context of inertial navigation systems and serves as a basis for the next generation of equivariant estimators, marking a significant leap toward more reliable navigation solutions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: