Papers
Topics
Authors
Recent
2000 character limit reached

Subspace-Based Local Compilation of Variational Quantum Circuits for Large-Scale Quantum Many-Body Simulation

Published 19 Jul 2024 in quant-ph and cond-mat.str-el | (2407.14163v1)

Abstract: Simulation of quantum many-body systems is a promising application of quantum computers. However, implementing the time-evolution operator as a quantum circuit efficiently on near-term devices with limited resources is challenging. Standard approaches like Trotterization often require deep circuits, making them impractical. This paper proposes a hybrid quantum-classical algorithm called Local Subspace Variational Quantum Compilation (LSVQC) for compiling the time-evolution operator. The LSVQC uses variational optimization to reproduce the action of the target time-evolution operator within a physically reasonable subspace. Optimization is performed on small local subsystems based on the Lieb-Robinson bound, allowing for cost function evaluation using small-scale quantum devices or classical computers. Numerical simulations on a spin-lattice model and an $\mathit{\text{ab initio}}$ effective model of strongly correlated material Sr$_2$CuO$_3$ demonstrate the algorithm's effectiveness. It is shown that the LSVQC achieves a 95% reduction in circuit depth compared to Trotterization while maintaining accuracy. The subspace restriction also reduces resource requirements and improves accuracy. Furthermore, we estimate the gate count needed to execute the quantum simulations using the LSVQC on near-term quantum computing architectures in the noisy intermediate-scale or early fault-tolerant quantum computing era. Our estimation suggests that the acceptable physical gate error rate for the LSVQC can be significantly larger than for Trotterization.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.