Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fine-grained Knowledge Graph-driven Video-Language Learning for Action Recognition (2407.14146v1)

Published 19 Jul 2024 in cs.MM

Abstract: Recent work has explored video action recognition as a video-text matching problem and several effective methods have been proposed based on large-scale pre-trained vision-LLMs. However, these approaches primarily operate at a coarse-grained level without the detailed and semantic understanding of action concepts by exploiting fine-grained semantic connections between actions and body movements. To address this gap, we propose a contrastive video-language learning framework guided by a knowledge graph, termed KG-CLIP, which incorporates structured information into the CLIP model in the video domain. Specifically, we construct a multi-modal knowledge graph composed of multi-grained concepts by parsing actions based on compositional learning. By implementing a triplet encoder and deviation compensation to adaptively optimize the margin in the entity distance function, our model aims to improve alignment of entities in the knowledge graph to better suit complex relationship learning. This allows for enhanced video action recognition capabilities by accommodating nuanced associations between graph components. We comprehensively evaluate KG-CLIP on Kinetics-TPS, a large-scale action parsing dataset, demonstrating its effectiveness compared to competitive baselines. Especially, our method excels at action recognition with few sample frames or limited training data, which exhibits excellent data utilization and learning capabilities.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube