Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 46 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 40 tok/s Pro
2000 character limit reached

Fine-grained Knowledge Graph-driven Video-Language Learning for Action Recognition (2407.14146v1)

Published 19 Jul 2024 in cs.MM

Abstract: Recent work has explored video action recognition as a video-text matching problem and several effective methods have been proposed based on large-scale pre-trained vision-LLMs. However, these approaches primarily operate at a coarse-grained level without the detailed and semantic understanding of action concepts by exploiting fine-grained semantic connections between actions and body movements. To address this gap, we propose a contrastive video-language learning framework guided by a knowledge graph, termed KG-CLIP, which incorporates structured information into the CLIP model in the video domain. Specifically, we construct a multi-modal knowledge graph composed of multi-grained concepts by parsing actions based on compositional learning. By implementing a triplet encoder and deviation compensation to adaptively optimize the margin in the entity distance function, our model aims to improve alignment of entities in the knowledge graph to better suit complex relationship learning. This allows for enhanced video action recognition capabilities by accommodating nuanced associations between graph components. We comprehensively evaluate KG-CLIP on Kinetics-TPS, a large-scale action parsing dataset, demonstrating its effectiveness compared to competitive baselines. Especially, our method excels at action recognition with few sample frames or limited training data, which exhibits excellent data utilization and learning capabilities.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.