Dual adversarial and contrastive network for single-source domain generalization in fault diagnosis (2407.13978v2)
Abstract: Domain generalization achieves fault diagnosis on unseen modes. In process industrial systems, fault samples are limited, and it is quite common that the available fault data are from a single mode. Extracting domain-invariant features from single-mode data for unseen mode fault diagnosis poses challenges. Existing methods utilize a generator module to simulate samples of unseen modes. However, multi-mode samples contain complex spatiotemporal information, which brings significant difficulties to accurate sample generation. To solve this problem, this paper proposed a dual adversarial and contrastive network (DACN) for single-source domain generalization in fault diagnosis. The main idea of DACN is to generate diverse sample features and extract domain-invariant feature representations. An adversarial pseudo-sample feature generation strategy is developed to create fake unseen mode sample features with sufficient semantic information and diversity, leveraging adversarial learning between the feature transformer and domain-invariant feature extractor. An enhanced domain-invariant feature extraction strategy is designed to capture common feature representations across multi-modes, utilizing contrastive learning and adversarial learning between the domain-invariant feature extractor and the discriminator. Experiments on the Tennessee Eastman process and continuous stirred-tank reactor demonstrate that DACN achieves high classification accuracy on unseen modes while maintaining a small model size.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.