Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Dual adversarial and contrastive network for single-source domain generalization in fault diagnosis (2407.13978v2)

Published 19 Jul 2024 in cs.LG

Abstract: Domain generalization achieves fault diagnosis on unseen modes. In process industrial systems, fault samples are limited, and it is quite common that the available fault data are from a single mode. Extracting domain-invariant features from single-mode data for unseen mode fault diagnosis poses challenges. Existing methods utilize a generator module to simulate samples of unseen modes. However, multi-mode samples contain complex spatiotemporal information, which brings significant difficulties to accurate sample generation. To solve this problem, this paper proposed a dual adversarial and contrastive network (DACN) for single-source domain generalization in fault diagnosis. The main idea of DACN is to generate diverse sample features and extract domain-invariant feature representations. An adversarial pseudo-sample feature generation strategy is developed to create fake unseen mode sample features with sufficient semantic information and diversity, leveraging adversarial learning between the feature transformer and domain-invariant feature extractor. An enhanced domain-invariant feature extraction strategy is designed to capture common feature representations across multi-modes, utilizing contrastive learning and adversarial learning between the domain-invariant feature extractor and the discriminator. Experiments on the Tennessee Eastman process and continuous stirred-tank reactor demonstrate that DACN achieves high classification accuracy on unseen modes while maintaining a small model size.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.