Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

High Risk of Political Bias in Black Box Emotion Inference Models (2407.13891v2)

Published 18 Jul 2024 in cs.CL and cs.AI

Abstract: This paper investigates the presence of political bias in emotion inference models used for sentiment analysis (SA) in social science research. Machine learning models often reflect biases in their training data, impacting the validity of their outcomes. While previous research has highlighted gender and race biases, our study focuses on political bias - an underexplored yet pervasive issue that can skew the interpretation of text data across a wide array of studies. We conducted a bias audit on a Polish sentiment analysis model developed in our lab. By analyzing valence predictions for names and sentences involving Polish politicians, we uncovered systematic differences influenced by political affiliations. Our findings indicate that annotations by human raters propagate political biases into the model's predictions. To mitigate this, we pruned the training dataset of texts mentioning these politicians and observed a reduction in bias, though not its complete elimination. Given the significant implications of political bias in SA, our study emphasizes caution in employing these models for social science research. We recommend a critical examination of SA results and propose using lexicon-based systems as a more ideologically neutral alternative. This paper underscores the necessity for ongoing scrutiny and methodological adjustments to ensure the reliability and impartiality of the use of machine learning in academic and applied contexts.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com