Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SOC-Boundary and Battery Aging Aware Hierarchical Coordination of Multiple EV Aggregates Among Multi-stakeholders with Multi-Agent Constrained Deep Reinforcement Learning (2407.13790v1)

Published 14 Jul 2024 in eess.SY and cs.SY

Abstract: As electric vehicles (EV) become more prevalent and advances in electric vehicle electronics continue, vehicle-to-grid (V2G) techniques and large-scale scheduling strategies are increasingly important to promote renewable energy utilization and enhance the stability of the power grid. This study proposes a hierarchical multistakeholder V2G coordination strategy based on safe multi-agent constrained deep reinforcement learning (MCDRL) and the Proof-of-Stake algorithm to optimize benefits for all stakeholders, including the distribution system operator (DSO), electric vehicle aggregators (EVAs) and EV users. For DSO, the strategy addresses load fluctuations and the integration of renewable energy. For EVAs, energy constraints and charging costs are considered. The three critical parameters of battery conditioning, state of charge (SOC), state of power (SOP), and state of health (SOH), are crucial to the participation of EVs in V2G. Hierarchical multi-stakeholder V2G coordination significantly enhances the integration of renewable energy, mitigates load fluctuations, meets the energy demands of the EVAs, and reduces charging costs and battery degradation simultaneously.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.