Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

PASTA: Controllable Part-Aware Shape Generation with Autoregressive Transformers (2407.13677v1)

Published 18 Jul 2024 in cs.CV, cs.AI, cs.GR, and cs.LG

Abstract: The increased demand for tools that automate the 3D content creation process led to tremendous progress in deep generative models that can generate diverse 3D objects of high fidelity. In this paper, we present PASTA, an autoregressive transformer architecture for generating high quality 3D shapes. PASTA comprises two main components: An autoregressive transformer that generates objects as a sequence of cuboidal primitives and a blending network, implemented with a transformer decoder that composes the sequences of cuboids and synthesizes high quality meshes for each object. Our model is trained in two stages: First we train our autoregressive generative model using only annotated cuboidal parts as supervision and next, we train our blending network using explicit 3D supervision, in the form of watertight meshes. Evaluations on various ShapeNet objects showcase the ability of our model to perform shape generation from diverse inputs \eg from scratch, from a partial object, from text and images, as well size-guided generation, by explicitly conditioning on a bounding box that defines the object's boundaries. Moreover, as our model considers the underlying part-based structure of a 3D object, we are able to select a specific part and produce shapes with meaningful variations of this part. As evidenced by our experiments, our model generates 3D shapes that are both more realistic and diverse than existing part-based and non part-based methods, while at the same time is simpler to implement and train.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube