Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

COMCAT: Leveraging Human Judgment to Improve Automatic Documentation and Summarization (2407.13648v1)

Published 18 Jul 2024 in cs.SE

Abstract: Software maintenance constitutes a substantial portion of the total lifetime costs of software, with a significant portion attributed to code comprehension. Software comprehension is eased by documentation such as comments that summarize and explain code. We present COMCAT, an approach to automate comment generation by augmenting LLMs with expertise-guided context to target the annotation of source code with comments that improve comprehension. Our approach enables the selection of the most relevant and informative comments for a given snippet or file containing source code. We develop the COMCAT pipeline to comment C/C++ files by (1) automatically identifying suitable locations in which to place comments, (2) predicting the most helpful type of comment for each location, and (3) generating a comment based on the selected location and comment type. In a human subject evaluation, we demonstrate that COMCAT-generated comments significantly improve developer code comprehension across three indicative software engineering tasks by up to 12% for 87% of participants. In addition, we demonstrate that COMCAT-generated comments are at least as accurate and readable as human-generated comments and are preferred over standard ChatGPT-generated comments for up to 92% of snippets of code. Furthermore, we develop and release a dataset containing source code snippets, human-written comments, and human-annotated comment categories. COMCAT leverages LLMs to offer a significant improvement in code comprehension across a variety of human software engineering tasks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.