Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

How Reliable are LLMs as Knowledge Bases? Re-thinking Facutality and Consistency (2407.13578v2)

Published 18 Jul 2024 in cs.CL and cs.AI

Abstract: LLMs are increasingly explored as knowledge bases (KBs), yet current evaluation methods focus too narrowly on knowledge retention, overlooking other crucial criteria for reliable performance. In this work, we rethink the requirements for evaluating reliable LLM-as-KB usage and highlight two essential factors: factuality, ensuring accurate responses to seen and unseen knowledge, and consistency, maintaining stable answers to questions about the same knowledge. We introduce UnseenQA, a dataset designed to assess LLM performance on unseen knowledge, and propose new criteria and metrics to quantify factuality and consistency, leading to a final reliability score. Our experiments on 26 LLMs reveal several challenges regarding their use as KBs, underscoring the need for more principled and comprehensive evaluation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.