Papers
Topics
Authors
Recent
Search
2000 character limit reached

FREST: Feature RESToration for Semantic Segmentation under Multiple Adverse Conditions

Published 18 Jul 2024 in cs.CV | (2407.13437v1)

Abstract: Robust semantic segmentation under adverse conditions is crucial in real-world applications. To address this challenging task in practical scenarios where labeled normal condition images are not accessible in training, we propose FREST, a novel feature restoration framework for source-free domain adaptation (SFDA) of semantic segmentation to adverse conditions. FREST alternates two steps: (1) learning the condition embedding space that only separates the condition information from the features and (2) restoring features of adverse condition images on the learned condition embedding space. By alternating these two steps, FREST gradually restores features where the effect of adverse conditions is reduced. FREST achieved a state of the art on two public benchmarks (i.e., ACDC and RobotCar) for SFDA to adverse conditions. Moreover, it shows superior generalization ability on unseen datasets.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.