Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

CiteFusion: An Ensemble Framework for Citation Intent Classification Harnessing Dual-Model Binary Couples and SHAP Analyses (2407.13329v3)

Published 18 Jul 2024 in cs.CL

Abstract: Understanding the motivations underlying scholarly citations is essential to evaluate research impact and pro-mote transparent scholarly communication. This study introduces CiteFusion, an ensemble framework designed to address the multi-class Citation Intent Classification task on two benchmark datasets: SciCite and ACL-ARC. The framework employs a one-vs-all decomposition of the multi-class task into class-specific binary sub-tasks, leveraging complementary pairs of SciBERT and XLNet models, independently tuned, for each citation intent. The outputs of these base models are aggregated through a feedforward neural network meta-classifier to reconstruct the original classification task. To enhance interpretability, SHAP (SHapley Additive exPlanations) is employed to analyze token-level contributions, and interactions among base models, providing transparency into the classification dynamics of CiteFusion, and insights about the kind of misclassifications of the ensem-ble. In addition, this work investigates the semantic role of structural context by incorporating section titles, as framing devices, into input sentences, assessing their positive impact on classification accuracy. CiteFusion ul-timately demonstrates robust performance in imbalanced and data-scarce scenarios: experimental results show that CiteFusion achieves state-of-the-art performance, with Macro-F1 scores of 89.60% on SciCite, and 76.24% on ACL-ARC. Furthermore, to ensure interoperability and reusability, citation intents from both datasets sche-mas are mapped to Citation Typing Ontology (CiTO) object properties, highlighting some overlaps. Finally, we describe and release a web-based application that classifies citation intents leveraging the CiteFusion models developed on SciCite.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.