Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predictive control for nonlinear stochastic systems: Closed-loop guarantees with unbounded noise (2407.13257v5)

Published 18 Jul 2024 in eess.SY, cs.SY, and math.OC

Abstract: We present a stochastic model predictive control framework for nonlinear systems subject to unbounded process noise with closed-loop guarantees. First, we provide a conceptual shrinking-horizon framework that utilizes general probabilistic reachable sets and minimizes the expected cost. Then, we provide a tractable receding-horizon formulation that uses a nominal state to minimize a deterministic quadratic cost and satisfy tightened constraints. Our theoretical analysis demonstrates recursive feasibility, satisfaction of chance constraints, and bounds on the expected cost for the resulting closed-loop system. We provide a constructive design for probabilistic reachable sets of nonlinear continuously differentiable systems using stochastic contraction metrics and an assumed bound on the covariance matrices. Numerical simulations highlight the computational efficiency and theoretical guarantees of the proposed method. Overall, this paper provides a framework for computationally tractable stochastic predictive control with closed-loop guarantees for nonlinear systems with unbounded noise.

Summary

We haven't generated a summary for this paper yet.