Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Predictive control for nonlinear stochastic systems: Closed-loop guarantees with unbounded noise (2407.13257v5)

Published 18 Jul 2024 in eess.SY, cs.SY, and math.OC

Abstract: We present a stochastic model predictive control framework for nonlinear systems subject to unbounded process noise with closed-loop guarantees. First, we provide a conceptual shrinking-horizon framework that utilizes general probabilistic reachable sets and minimizes the expected cost. Then, we provide a tractable receding-horizon formulation that uses a nominal state to minimize a deterministic quadratic cost and satisfy tightened constraints. Our theoretical analysis demonstrates recursive feasibility, satisfaction of chance constraints, and bounds on the expected cost for the resulting closed-loop system. We provide a constructive design for probabilistic reachable sets of nonlinear continuously differentiable systems using stochastic contraction metrics and an assumed bound on the covariance matrices. Numerical simulations highlight the computational efficiency and theoretical guarantees of the proposed method. Overall, this paper provides a framework for computationally tractable stochastic predictive control with closed-loop guarantees for nonlinear systems with unbounded noise.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.